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Summary

Global asymptotic stability of a class of nonlinear multibody flexible space-structures
under dissipative compensation is established. Two cases are considered. The first case
allows unlimited nonlinear motion of the entire system and uses quaternion feedback.
The second case assumes that the central body motion is in the linear range although the
other bodies can undergo unrestricted nonlinear motion. For both cases, the stability is
proved to be robust to inherent nonlinearities and modeling uncertainties. Furthermore,
for the second case, the stability is also shown to be robust to certain actuator and sensor
nonlinearities. The stability proofs use the Lyapunov approach and exploit the inherent
passivity of such systems. The results are applicable to a wide class of systems, including

flexible space-structures with articulated flexible appendages.

Introduction

Many space missions envisioned for the future will require flexible multibody space
systems such as space platforms with multiple articulated payloads, and space-based
manipulators used for satellite assembly and servicing. Such systems are expected to
have significant flexibility in the structural members as well as joints. Control systems
design for such systems is a difficult problem because of the highly nonlinear dynamics,
large number of significant elastic modes with low inherent damping, and uncertainties in
the mathematical model. The literature discussed below contains a number of important
stability results for certain subclasses of this problem; e.g., linear flexible structures,
nonlinear multibody rigid structures, and most recently, multibody flexible structures.
Under certain conditions, the input-output maps for such systems can be shown to be
“passive” [1]. The Lyapunov and passivity approaches are used in [2] to demonstrate global
asymptotic stability of linear flexible space structures (with no articulated appendages)
for a class of dissipative compensators. The stability properties were shown to be robust
to first-order actuator dynamics and certain actuator/sensor nonlinearities. Multibody
rigid structures comprise another class of systems for which stability results have been
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advanced. Ideally, subject to certain restrictions, these systems can be categorized as
“natural systems” [3]. Such systems are known to exhibit global asymptotic stability under
proportional-and-derivative (PD) control. Upon recognition that rigid manipulators belong
to the class of natural systems, a number of researchers [4], [5], [6], [7] etc., have established
global asymptotic stability of terrestrial rigid manipulators employing PD control with
gravity compensation. Stability of tracking controllers was investigated in [8] and [9] for
rigid manipulators. In [10], an extension of the results of [9] to the exponentially stable
tracking control for flexible multilink manipulators, local to the desired trajectory, was
obtained. Lyapunov stability of multilink flexible systems was addressed in [11]. However,
the global asymptotic stability for nonlinear, multﬂink, flexible space-structures has not

been addressed in the literature, and that is the subject of this paper.

We consider a complete nonlinear rotational dynamic model of a multibody flexible
spacecraft which is assumed to have a branched geometry, i.e., it has a central flexible body
to which various flexible appendage bodies are attached (Figure 1). Global asymptotic
stability of such systems controlled by dissipative controllers is proved. In many applications
the central body has a large mass and moments of inertia as compared to any other
appendage bodies. For this case, the effects of realistic nonlinearities in the actuators and
sensors are investigated when the central body is in the attitude-hold configuration. The
proofs given use the Lyapunov approach. For systems with linear actuators and sensors,
the stability proof by Lyapunov’s method can take a simpler form if the Work-Energy
Rate principle [11] is used. However, since the Work-Energy Rate principle is applicable
only when the system is holonomic and scleronomic in nature, we have used a more direct
approach in evaluating the time derivative of the Lyapunov function so that the results are

more general.

Symbols
B control influence matrix
Cc Coriolis and centrifugal force matrix
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M(p)

P, P

a1

damping matrix

structural damping matrix

position gain matrices

rate gain matrix

stiffness matrix of the system

stiffness matrix for the flexible degrees of freedom
number of rigid body degrees of freedom
Lagrangian of the system

mass-inertia matrix of the system
number of total degrees of freedom
generalized coordinate vectors

vector of rigid body coordinates

vector of flexural coordinates
skew-symmetric matrix

vector of control input

Lyapunov function candidate

state vectors

position output

rate output

state vector

the quaternion

ith component of quaternion

vector part of quaternion

ith component of unit vector along eigen axis
scalar defined as (aq — 1)

integral of w

Euler angle vector



Yai actuator nonlinearity (ith loop)

Ppi position sensor nonlinearity (ith loop)

Vri rate sensor nonlinearity (ith loop)

w angular velocity vector for the central body

wx skew-symmetric matrix of the components of w

] vector of rotational degrees of freedom between rigid bodies

Mathematical Model

The class of systems considered here have a branched configuration as shown in Figure 1.
Each branch by itself could be a serial multibody structure. For the sake of simplicity, and
without loss of generality, we will consider a spacecraft with only one such branch (Figure 2)
where each appendage body has one degree of freedom (hinge) with respect to the previous
body in the chain. The results obtained in this paper, however, will also be applicable to
the general case with multiple branches. Consider the spacecraft consisting of a central
flexible body and a chain of (k — 3) flexible links. The central body has three rigid rotational
degrees of freedom, and each link is connected by one rotational degree of freedom to the
neighboring link. That means there are k rigid body degrees of freedom. The Lagrangian for

the system under consideration can be given by
L=5"Mp)p—q"Kq (1)

where, p = {wT,67,4T}T; w is the 3 x 1 inertial angular velocity vector for the central body;
6 = (61,0,.., 0(k_3))T, where 6; denotes the joint angle for the ith joint expressed in body-
fixed coordinates; ¢ is the (n — k) vector of flexible degrees of freedom (modal amplitudes);
M(p) = MT(p) > 0is the configuration-dependent mass-inertia matrix, and K is the
symmetric positive definite stiffness matrix related to the flexible degrees of freedom. Using
the Lagrangian (1) the following equations of motion are obtained. The details of the

derivation of math model can be found in [13].

M(p)p + C(p,p)p+ Dp+ Kp = BT u (2)
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where {p} = {y7,67,47}7, and ¥ = w. C(p,p) corresponds to Coriolis and centrifugal forces; D
is the symmetric, positive semidefinite damping matrix; B = [Ixxx Okx(n—k)] is the control
influence matrix and u is the k-vector of applied torques. The first three components of
are the torques applied to the central body by attitude control actuators (one about each
body-fixed axis), and the remaining components are the torques applied at the (k — 3) joints.
K and D are symmetric, positive semidefinite stiffness and damping matrices:

Okxk _Okx(n—k) ] D= [ Okxk _ Okx(n—k) ] (3)

K=
[O(n—k)xk K(n-k)x(n~k) Otn—-k)xk  D(n—k)x(n—k)

where K and D are symmetric positive definite. The angular measurements for the central
body are Euler angles (not the vector v), whereas remaining angular measurements between
bodies are relative angles. One important inherent property (which we shall call “property
S”) of such systems that is crucial to the stability results to be presented is given below.
Property S: For the system represented by equation (2), the matrix (M — C) is skew-

symmetric.

Outline of Proof: Using the indicial notation, the k, j-th element of C(p, p) is defined as

1 aMk BM, :
th]k(p)pi Z { : ko J} Di
J

i=1 =1

Similarly, the kj-th component of the time derivative of the inertia mdtrix, M(p), is given by

the chain rule as

oMy .

.Z op; T

=1

Now if we define the matrix S = (M — C), then the k, j-th element of S is given by

1
Sk; = (§M — Ck;)
1 i [aMkJ aMk,- OMy; aM,-]- ] .
T2 ; Op; p: | p; e

1 e OM;;  OM;] .
_22[31’1: 3Pj]p'

Since the inertia matrix is symmetric, i.e., M;; = Mj;;, it follows from above equation by
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interchanging the indices k and j that
Sik = ~5kj

Which means the matrix § is skew-symmetric. =
It is assumed that the sensors consist of angular position and rate sensors which are

collocated with the torque actuators. The sensor outputs are then given by:
yp = Bp and yr = Bp (4)

where $ = (7,67, ¢T)T wherein 5 is the Euler angle vector for the central body. y, = (3T,67)T
and y» = (wT,6T)T are measured angular position and rate vectors, respectively. It is

assumed that the body rate measurements, w, are available via rate gyros.

Quaternion as a Measure of Attitude

The orientation of a free-floating body can be minimally represented by a 3-dimensional
orientation vector. However, this representation is not unique. One minimal representation
that is commonly used to represent the attitude is Euler angles. The 3x1 Euler angle vector
n is given by [14] : E(n)) = w, where E() is a 3x3 transformation matrix. E(n) becomes
singular for certain values of n; however, it is to be noted that the limitations imposed on
the allowable orientations due to this singularity are purely mathematical in nature and
have no physical significance. The problem of singularity in 3-parameter representation
of attitude has been studied in detail in the literature. An effective way of overcoming the
singularity problem is to use the quaternion formulation (see [15]- [17]).

The unit quaternion « is defined as follows.

o= (e a)T, @= [33} sin(2), e = cos(®) (5)
@3

& = (61, d2,a3)T is the unit vector along the eigen-axis of rotation and ¢ is the magnitude

of rotation. The quaternion is also subjected to the norm constraint:



It can be also shown [18] that the quaternion obeys the following kinematic differential

equations.
&= %(w X & + aqw) (7)
. 1 r_
a4 = —'2-(.4) a (8)

The attitude control of a single-body rigid spacecraft using a quaternion feedback has been
thoroughly investigated [12], [15-17]. We shall use quaternion representation for the central
body attitude. The quaternion can be computed [18] using Euler angle measurements (Eq.
4).

Defining 8 = (a4 — 1) and denoting p = z, equations (2), (7), and (8) can be rewritten as:

M:+Cz+ Dz + K{01x3,67,¢7}T = BTu (9)
3:%(wxa+(ﬂ+l)w) (10)

. 1 T—
B = —Ew a (11)

In equation (9) the matrices M and C are functions of p, and (p, p), respectively. It is to
be noted that the first three elements of p associated with the orientation of central body
can be fully described by the unit quaternion. Hence, M and C are implicit functions of «,
and therefore, the system represented by equations (9)-(11) is time-invariant and can be

expressed in the state-space form as follows:

&= f(z,u) (12)

where z = (a7, 8,67 ,4¢7,2T)T. Note that the dimension of z is (2n + 1), which is one more than
the dimension of system in (2). However, one constraint (Eq. 6) is now present. It can be
easily verified from (6)-(8) that the constraint (6) is satisfied for all ¢ > 0 if it is satisfied at

t=0.



Stability with Dissipative Control Law

Consider the control law u, given by:

where = {a7,6T}T. Matrices G, and G, are symmetric positive definite (k x k) matrices and

Gp is given by:

G,= | 0+ sy (14)
Ok-3)x3  Gr2(k-3)x(k-3)

Note that egs. (13) and (14) represent a nonlinear control law. If G, and G, are symmetric
and positive definite, this control law can be shown to render the time-rate of change of
the system’s energy negative along all trajectories; i.e., it is a dissipative control law. The
closed-loop equilibrium solution can be obtained by equating all the derivatives to zero in
Egs. (2), (10), and (11), with the input as in (13) and (14). It can be easily verified that
the equilibrium solutions of the closed-loop system given by eqs. (12) and (13) are: @ = 0,
0=0,g=0,z=0,and g = 0or -2 (i.e., ag = x1). Thus, there appear to be two closed-loop
equilibrium points corresponding to 8 = 0 (aq = 1) and # = -2 (a4 = —1) (all the other state
variables being zero). However, from Eq. (5),8=0(as=1)=>¢=0,and f = -2 (ag = 1) =
é = 2, i.e., there is only one equilibrium point in the physical space. One objective of the
control law is to transfer the state of the system from one orientation (equilibrium) position
to another orientation. Without loss of generality, the target orientation can be defined to
be the origin (z = 0), and the initial orientation, given by (@(0), 3(0),6(0)) can always be
defined in such a way that |6;(0)] < =, and -1 < B(0) < 0,1.e.,0 < a4(0) < 1 (corresponding
to |¢] < 7) and (@(0), a4(0)) satisfy Eq. (6).

The following theorem establishes the global asymptotic stability of the physical
equilibrium state of the system.
Theorem 1. Suppose Gp2(k-3)x (k-3) and Gr(xxk) are symmetric and positive definite, and
Gp1 = pl3 where p > 0. Then, the closed-loop system given by equations (12) and (13) is

globally asymptotically stable.



Proof.

Consider the Lyapunov function
1, . 1 1_ —
V= §PTM(P)P + §qTKq + §9TGp29 +3 T(Gp1 + 2uL3)a + pp? (15)

V is clearly positive definite and radially unbounded with respect to the state vector
{aT,B,67T,q7,pT}7 since M(p), K, Gp1 and Gy, are positive definite symmetric matrices.

Taking the time derivative, we have:
V= 5T Mp+ 55T Mp+ TR+ 6T Gl + & (Gt + 2ul) + 2168 (16)
Using (2), (4), (10), (11) and (14), we get:

. . T, 1. .. . T & : 1, _ 1 - .
V= pTBTu+pT(§M—C)p—pTDp—pTKp+ qTKq+0TGp29+ E(Qa)TGpla-i- 5(,H+ l)wTGp1a+pra

(17)
where @ = (wx) is a skew-symmetric matrix. Substituting for « and noting that, 7 Kp =
§TKq, (Qa)TGp@ = 0, and using Property S of the system, we obtain

. . . ) L1 .
V = —pT(D + BTG, B)p — (Bp)TGpp + 5B+ DwT Gpia + pwTa + 67Gp26 (18)

Note that (Bp)TGpp = 1(8 + 1)wT Gpi@ + pwT@ 4 6T G 8. After several cancellations, we get
V = —pT(D + BTG, B)p (19)

Since (D + BTG, B) is a positive definite symmetric matrix, V < 0, i.e., V is negative
semidefinite, and V = 0 = p = 0 = $ = 0. Substituting in the closed-loop equation we get

BT 5 — —Gpp _ Olgxl
B G = [O(n—k)xl] - [ Kq ] (20)

= p=0,and ¢ = 0,i.e.,,@ = 0,0 = 0,and B = 0 or —2. Thus, V < 0 along all trajectories,
and V = 0 at the two equilibrium points. Therefore, if the system’s initial condition lies
anywhere in the state space except at the equilibrium point corresponding to 8 = -2, then
the trajectory will asymptotically approach the origin, i.e., 2 = 0; and if the system is at
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the equilibrium point corresponding to 8 = -2 at ¢t = 0 then it will stay there for all ¢ > 0.
However, consistent with the previous discussion, the two equilibrium points in the state
space represent the same equilibrium point in the physical space; hence it can be concluded

that the system is globally asymptotically stable. =

A Special Case:

Consider a special case where the central body attitude motion is small. This can occur
in many realistic situations. For example, in the case of a space station-based or Shuttle-
based manipulator, the inertia of the base (central ibody) is much larger than that of any
manipulator link or payload. In such cases the rotational motioh of the base can be assumed
to be in the linear region, although the payloads (or links) attached to it can undergo
large rotational and translational motions and nonlinear dynamic loading due to Coriolis
and centripetal accelerations. For this case, the attitude of the central body is simply the
integral of the inertial angular velocity and the use of quaternions is not necessary. The

equations of motion (2) can now be expressed in the state-space form simply as:
T= 9(z, u) (21)

where 7 = (pT, pT)T.

The dissipative control law u is now given by:
u = —Gpyp — Gryr (22)
where, G, is symmetric positive definite (k x k) matrix,
yp = Bp and yr = Bp (23)

yp and y, are measured angular position and rate vectors.

Theorem 2. Suppose Gy, and Grix are symmetric and positive definite. Then, the

closed-loop system given by equations (21), (22) and (23) is globally asymptotically stable.
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Proof.

Consider the Lyapunov function
1. .1 —
V= ‘2'PTM(P)P+ §PT(K + BTG,B)p (24)

V is clearly positive definite since M(p) and (K + BTG,B) are positive definite symmetric

matrices. Taking the time derivative, letting K = (K + BTG, B), and simplifying, we get
V = 7 (3M - C)p - " Rp+ 5" Kp — 57 (D + BTG, Bp (25)
Again, using Property S, we get, pT(3M — C)p = 0, and after some cancellations, we obtain
V = —pT(D + BTG, B)p (26)

Since (D + BTG, B) is the positive definite symmetric matrix, V < 0, i.e., V is negative
semidefinitein pand pand V = 0 = p = 0 = p = 0. Substituting in the closed-loop equation
we get

(K+BTG,B)p=0 =>p=0 (27)
Thus, V is not zero along any trajectories; then, by LaSalle’s theorem, the system is globally
asymptotically stable. m

The significance of the two results presented above is that any nonlinear multibody system
belonging to these classes can be robustly stabilized with dissipative control laws. In the case of manipulators,
this means that one can accomplish any terminal angular position from any initial position

with guaranteed asymptotic stability.

Robustness to Actuator/Sensor Nonlinearities

Theorem 2 proves global asymptotic stability for the practically important case where
the central body motion is in the linear range and the other bodies undergo nonlinear
motion. It assumes linear actuators and sensors. In practice, however, the actuators and
sensors have nonlinearities. The following theorem extends the results of [2] to the case
of nonlinear flexible multibody systems. That is, the robust stability property of the
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dissipative controller is proved to hold in the presence of a wide class of actuator/sensor
nonlinearities.

Let %4i(-), ¥pi(), and 4,;(-) denote the nonlinearities in the ith actuator, position sensor,
and rate sensor channels, respectively. Assuming G, and G, are diagonal, the actual input is
given by:

4 = Yail—Gpitpi(Upi) — Grithri(yri)] (t=1,2,..,k) (28)
We assume that ¢, ¥, and ¢; (i = 1,2,..,k) are continuous single-valued functions:
R — R. [A function y(v) is said to belong to the (0, ) sector (Figure 3) if ¢(0) = 0 and
vip(v) > 0 for v # 0: ¢ is said to belong to the [0, c0) sector if vy(v) > 0]. The following theorem
gives sufficient conditions for stability.
Theorem 3. Consider the closed-loop system given by (21), (22), (23), and (28), where
Gp and G, are diagonal with positive entries. Suppose (for i = 1,2,...,k) ¥ai, ¥pi, and ¢,; are
single-valued, time invariant continuous functions belonging to the (0, 00) sector and +,; are
monotonically nondecreasing. Under these conditions, the closed-loop system is globally
asymptotically stable.

Proof.

(The proof closely follows [2].) Let w = —y, (k-vector). Define
Ppi(v) = ~pi(-v) (29)

Yri(V) = —9ri(—v) (30)
If ¥pi, ¥ri € (0,00) or [0, 00) sector then Ep,-, ¥,; also belong to the same sector. Now, consider

the following Luré-Postnikov Lyapunov function :
1 1pe o [
V= g MO+ g Ret 3 | ectCoiBpiyav (31)

where, K is the symmetric positive definite part of K. Taking the time derivative and using
(2),

k
. A G o T
V =pT[BTu~Cp—Dp— Kpl+ 55" Mp+ ) tithai{Gpi¥hpiwi)} + " Kg (32)

i=1
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Upon several cancellations and using Property S,
k k
V=) uwigei— " D+ Y hithai{Gpithpi(wy)} (33)
i=1 i=1
where, matrix D is the positive definite part of D.
k
V==4TDj - hi($ailGrithri(1h:) + Cpithyi(w:)] — YailGpi¥pi(wi)]) (34)
i=1
If 44; are monotonic nondecreasing and y,; belong to the (0, ) seétor, V < 0, and it can be
concluded that the system is at least Lyapunov-stable. Now we will prove that in fact the
system is globally asymptotically stable. First, let us consider a special case when v,; are
monotonic increasing. Then V < —¢7 Dg, and V = 0 only when ¢ = 0 and w = 0, which implies

p=0=p=0. Substituting in the closed-loop equation,
Kp= BT'/’a[—aplbp(yp)] (35)
0 a{—G,
[]?q] — [¢ { 1())"/’1?(3/?)}] (36)

= Ya[-Gpp(yp)] = 0, and ¢g=0

If ,; belong to the (0, 00) sector, ¥,:(v) = ¥,i(v) = 0 only when v = 0. Therefore, y, = 0. Thus,

V =0 only at the origin, and the system is globally asymptotically stable.

In the case when actuator nonlinearities are of the monotonic nondecreasing type (such
as saturation nonlinearity), V can be 0 even if w # 0. Figure 4 shows a monotonically
nondecreasing nonlinearity. However, we will show that every system trajectory along which
V = 0, has to go to the origin asymptotically. When @ # 0, V = 0 only when all actuators
are locally saturated. Then, from the equations of motion, it means that system trajectories
will go unbounded which is not possible since we have already proved that the system is
Lyapunov-stable. Hence, system trajectories have to approach the origin asymptotically,

and the system is globally asymptotically stable. =
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Concluding Remarks

Stability of a class of nonlinear multibody flexible space systems was considered using
a class of dissipative control laws. It was shown that robust global asymptotic stability
can be obtained using a nonlinear feedback of the central body quaternion angles, relative
body angles, and angular velocities. For the practically important special case wherein the
central body motion is in the linear range, it was shown that global asymptotic stability is
obtained with a linear dissipative control law. Furthermore, it was shown that the robust
stability is preserved in the presense of a wide class of actuator and sensor nonlinearities.
All the stability results presented are valid in spite of modeling errors and parametric
uncertainties. The results have a significant practical value since the mathematical models
of such systems usually have substantial inaccuracies, and the actuation and sensing devices

have nonlinearities.

References

[1]. C. A. Desoer, and M. Vidyasagar: Feedback Systems: Input-Output Properties. Academic
Press, Inc., New York, 1975.

[2]. S. M. Joshi: Control of Large Flezible Space Structures. Berlin Springer-Verlag, 1989 (Vol.
131, Lecture Notes in Control and Information Sciences).

[3]. L. Meirovitch: Methods of Analytical Dynamics. McGraw-Hill, New York, 1970.

[4]. M. Takegaki, and S. Arimoto: A New Feedback Method for Dynamic Control of
Manipulators. ASME Journal of Dynamic Systems, Measurement and Control, Vol. 102,
June 1981.

[5]. D. E. Koditschek: Natural Control of Robot Arms. Proc., I.LE.E.E Conference on
Decision and Control, Las Vegas, Nevada., pp. 733-735, 1984.

[6]. S. Arimoto, and F. Miyazaki: Stability and Robustness of PD Feedback Control
With Gravity Compensation for Robot Manipulator. ASME Winter Meeting, Anaheim,
California, pp. 67-72, December 1986.

[7]. M. Vidyasagar: Nonlinear Systems Analysis, 2nd ed., Englewood Cliffs, New Jersy,

14



Prentice Hall, 1993.

[8]. J. T. Wen, and D. S. Bayard: A New Class of Control Laws for Robotic Manipulator.
Int. Journal of Control, Vol. 47, No. 5, pp. 1361-1385, 1988.

[9]. B. Paden, and R. Panja: Globally Asymptotically Stable PD+ Controller for Robot
Manipulators. Int. Journal of Control, Vol. 47, No. 6, pp 1697-1712, 1988.

[10]. B. Paden, B. Riedle, and E. Bayo: Exponentially Stable Tracking Control for Multi-
Joint Flexible-Link Manipulators. Proc. 1990, American Control Conference, San Diego,
California, pp. 680-684, May 23-25, 1990.

[11]. J.-N. Juang, S.-C. Wu, M. Phan, and R. W. Longman: Passive Dynamic Controllers
for Nonlinear Mechanical Systems. NASA Technical Memorandum, TM 104047, March
1991.

[12]. J. T. Wen, and K. Kreutz-Delgado: The Attitude Control Problem, IEEE Transactions
on Automatic Control, Vol. 36, No. 10, pp. 1148-1163, 1991.

[13]). A. G. Kelkar: Robust Control of Nonlinear Multibody Flezible Space Structures, Ph.D.
dissertation, Dept. of Mechanical Engineering and Mechanics, Old Dominion University,
April 1993.

[14]. D.T. Greenwood: Principles of Dynamics, Prentice-Hall, Inc. Englewood Cliffs, New
Jersey 07632, 1988.

[15]. T. R. Kane: Solution of Kinematical Differential Equations for a Rigid Body,
Journal of Applied Mechanics, pp. 109-113, March 1973.

[16]. B. P. Ickes: A New Method for Performing Control System Attitude Computation
Using Quaternions, AIAA Journal, Vol. 8, pp. 13-17, January 1970.

[17]. C. F. Harding: Solution to Euler’s Gyrodynamics, Journal of Applied Mechanics,
pp. 325-328, June 1964.

(18]. E. G. Haug: Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and

Bacon Series in Engineering, 1989.

15



Branches

C

Q Central body o

Figure 1. Multibody system

Body (k-3) °

Z
°
)L’W
X

Central body

Figure 2. Multibody system with a single chain

16



y(v)

///////

Figure 3. Nonlinearity belonging to (0, 90) sector

Doy

//

y(v) 7
/. 7
// .
v

Figure 4. Monotonically non-decreasing nonlinearity

17



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated 10 avera

ge 1 hour per response, Includi
gathering and maintaining the data nesded, and completing and reviewing the coliaction of information. Send comments

the time for

Ang | . searching existing data sources,
nrdianhll burden estimate or any other aspact of this

colodg of information, ncludlrv l%bm for reducing this burden, 10 Washington Headquarters Services, Dlroaom’:?or information Operations and Reports, 1215 Jetlerson Davis

Highway. Suite 1204, Arlington, VA

4302, and to the Office of Management and Budget, Papenwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave dlank) 2. REPORT DATE
April 1994

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Robust Gontrol of Nonfinear Flexible Multibody Systems Using Quaternion WU 233-01-01-05

Feedback and Dissipative Compensation

6. AUTHOR(S)
Atut G. Kelkar and Suresh M. Joshi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA TM-109099

11. SUPPLEMENTARY NOTES

Kelkar: Old Dominion Universily, Norfolk, VA
Joshi: Langley Research Center, Hampton, VA

12a. DISTRIBUTION/ AVAILABILITY STATEMENT
Unclassified-Unlimited

Subject Category 18

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Global hsymptolic stability of a class of nonlinear multibody flexible space-structures under dissipative

compensation is established. Two cases are considered. The first case allows unlimited nonlinear motions ot
the entire system and uses quaternion feedback. The second case assumes that the central body motion is in
the linear range although the other bodies can undergo unrestricted nonlinear motion. The stability is proved to
be robust to the inherent modeling nonlinearities and uncertainties. Furthermore, for the second case, the
stability is also shown to be robust to certain actuator and sensor nonlinearities. The stability proofs use the
Lyapunov approach and exploit the inherent passivity of such systems. The results are applicable to a wide
class of systems, including flexible space-structures with articulated flexible appendages.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Robust contro!, Robot control, Multibody systems, Dissipative contro! 18

16. PRICE CODE
AO3
17. SECURITY CLASSIFICATION  [18. SECURITY CLASSIFICATION |19, SECURITY CLASSIFICATION  |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified

NSN 7540-01-280-5500 Standard Form 238 (Rev. 2-89)

Prescribed by ANS! Std. Z39-18
298-102







iIHIMHIIHIIU\IHHIWIHIHllVWNWHIHIH\HIWI

1176 01419 2182



